

Silicon Bipolar Transistors

Reliability Data

HBFP-0405 HBFP-0420 HBFP-0450

Description

The following cumulative test results have been obtained by Hewlett-Packard from process and product qualification, reliability monitor, and engineering evaluation tests. For the purpose of this reliability data sheet, a failure is any part which does not meet the relevant Hewlett-Packard specification following the reliability tests.

1.0 Life Test

|--|

Test Name	Test Conditions	Units Tested	Total Device Hrs.	Total Failed
High Temperature Operating Life (O.L.)	$\label{eq:TJ} \begin{array}{l} T_{J}=150^{\circ}C\\ V_{CE}=2~V,~I_{C}=20~mA \end{array}$	155	301,000	0
High Temperature Reverse Bias (HTRB)	$T_{J} = 150^{\circ}C, V_{cbo} = 12 V$	156	156,000	0

B. Failure Rate Prediction

Point MTTF is simply the total device hours divided by the number of failures. Since no failure was observed, an assumption was made that one unit failed. The assumed distribution is exponential and is commonly used in describing useful life failures. FIT is defined as failures in time, or specifically failures per billion hours. The relationship between MTTF and FIT is as follows: $FIT = 10^{9}/MTTF$. The failure rate will depend on the junction temperature of the device. The estimated life at different temperatures is calculated using activation energy of 1.0 eV.

Junction	Point		90% Confidence Level		
Temp. T _J (°C)	MTTF (hours)	FIT	MTTF (hours)	FIT	
150	3.0 x 10 ⁵	3322	1.3 x 10 ⁵	7649	
160	5.6 x 10 ⁶	1709	2.4 x 10 ⁵	3935	
130	1.2 x 106	850	5.2 x 10 ⁵	1957	
120	2.5 x 106	408	1.1 x 106	939	
110	5.3 x 10 ⁶	189	2.3 x 106	435	
100	1.2 x 107	84	5.2 x 10 ⁶	193	
90	2.8 x 107	36	1.2 x 107	83	
80	7.0 x 107	14	3.0 x 107	32	
70	1.8 x 10 ⁸	5	7.8 x 107	12	
60	5.0 x 10 ⁸	2	2.2 x 10 ⁸	5	
50	1.5 x 10 ⁹	1	6.5 x 108	2	

C. Example of Failure Rate Calculation

At 100°C for a device operating 8 hours a day, 5 days a week, the percent utilization is: % Utilization = (8 hours/day) x (5 days/week) \div 168 hours/week \cong 25%

Then at 100°C, the point failure rate per year is:

 $(8.4 \times 10^{-8/hr.}) \times (25\%) \times (8760 \text{ hours/year}) = 1.8 \times 10^{-2}\%$ per year Likewise, the 90% confidence level failure rate per year is: $(1.9 \times 10^{-7/hr.}) \times (25\%) \times (8760 \text{ hours/year}) = 4.2 \times 10^{-2}\%$ per year

2.0 Environmental Tests

Test Name	Test Conditions	Duration	Number of Failed/Sample Size
Thermal Shock	-65°C/+150°C, 5 min. dwell	1000 cycles	0/460
Temp Cycling	-65°C/+150°C, 10 min. dwell	2000 cycles 1000 cycles	0/227 0/228
Moisture Resistance (WHTRB)	85°C/RH 85%, V _{cbo} = 16.0 V	1000 hrs	0/176
Moisture Resistance (WHTOL)	85°C/RH 85%, V _{ce} = 2 V, 20 mA	2000 hrs	0/156
Autoclave	121°C, 15 psig, 100% RH	96 hrs	0/456
Resistance to Solvents	3 solvent groups	_	0/22
Solderability	245°C, 5 seconds	8 hrs steam aging	0/22

3.0 Electrostatic Discharge

Test Name	Referance	Results
Human Body Model	EIA/JESD22-A114-A	Class 1
Machine Model	EIA/JESD22-A115-A	Class A

Class 1 is ESD voltage level <2000V, Class 2 is voltage level between 2000V and 4000V, Class 3 is voltage level >4000V.

Class A is ESD voltage level <200 V, Class B is voltage level between 200 V and 400 V, Class C is voltage level >400 V.

4.0 Flammability Rating

The device is designed to meet the UL category D

Note:

Preconditioning per JESD22-A113-A class 1, was performed on all the devices before the reliability tests.

www.hp.com/go/rf

For technical assistance or the location of your nearest Hewlett-Packard sales office, distributor or representative call:

Americas/Canada: 1-800-235-0312 or 408-654-8675

Far East/Australasia: Call your local HP sales office.

Japan: (81 3) 3335-8152

Europe: Call your local HP sales office.

Data subject to change. Copyright © 1999 Hewlett-Packard Co.

Obsoletes 5968-1409E