

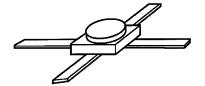
0.5-10 GHz Low Noise Gallium Arsenide FET

Technical Data

ATF-25170

Features

- Low Noise Figure: 0.8 dB Typical at 4 GHz
- **High Associated Gain:** 14.0 dB Typical at 4 GHz
- **High Output Power:** 21.0 dBm Typical P_{1 dB} at 4 GHz
- Hermetic Gold-Ceramic Microstrip Package


Description

The ATF-25170 is a high performance gallium arsenide Schottkybarrier-gate field effect transistor

housed in a hermetic, high reliability package. Its noise figure makes this device appropriate for use in low noise amplifiers operating in the 0.5-10 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length using airbridge interconnects between drain fingers. Total gate periphery is 500 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

70 mil Package

Electrical Specifications, $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions	Units	Min.	Тур.	Max.
NF _O	Optimum Noise Figure: $V_{DS} = 3 \text{ V}$, $I_{DS} = 20 \text{ mA}$ $f = 4.0 \text{ GH}$	z dB		0.8	1.0
	f = 60 GH	-		1.0	
	f = 8.0 GH	z dB		1.2	
G_{A}	Gain @ NF _O : $V_{DS} = 3 \text{ V}$, $I_{DS} = 20 \text{ mA}$ $f = 4.0 \text{ GH}$	z dB	13.0	14.0	
	f = 6.0 GH			11.5	
	f = 8.0 GH	z dB		9.0	
P _{1 dB}	Power Output @ 1 dB Gain Compression: f = 4.0 GH	dBm		21.0	
	$V_{\rm DS} = 5 \text{ V}, I_{\rm DS} = 50 \text{ mA}$				
$G_{1 dB}$	1 dB Compressed Gain: V_{DS} =5 V, I_{DS} =50 mA f = 4.0 GH	z dB		15.0	
g _m	Transconductance: $V_{DS} = 3 \text{ V}$, $V_{GS} = 0 \text{ V}$	mmho	50	80	
I_{DSS}	Saturated Drain Current: $V_{DS} = 3 \text{ V}, V_{GS} = 0 \text{ V}$	mA	50	100	150
V_{P}	Pinch-off Voltage: $V_{DS} = 3 \text{ V}$, $I_{DS} = 1 \text{ mA}$	V	-3.0	-2.0	-0.8

ATF-25170 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V_{DS}	Drain-Source Voltage	V	+7
V_{GS}	Gate-Source Voltage	V	-4
$V_{ m GD}$	Gate-Drain Voltage	V	-8
I_{DS}	Drain Current	mA	I_{DSS}
P _T	Power Dissipation [2,3]	mW	450
T _{CH}	Channel Temperature	°C	175
T _{STG}	Storage Temperature	°C	-65 to +175

Thermal Resistance: $θ_{jc} = 300^{\circ} \text{C/W}; T_{CH} = 150^{\circ} \text{C}$ Liquid Crystal Measurement: $1 \mu \text{m Spot Size}^{[4]}$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{MOUNTING SURFACE} = 25^{\circ}C.$
- 3. Derate at 3.3 mW/°C for $T_{MOUNTING\ SURFACE} > 40$ °C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.

ATF-25170 Noise Parameters: $V_{DS} = 3 \text{ V}$, $I_{DS} = 20 \text{ mA}$

Freq.	NFo	Γ	$R_N/50$		
GHz	dB	Mag	Ang	- K _N /30	
1.0	0.6	.89	24	.78	
2.0	0.7	.77	50	.53	
4.0	0.8	.63	105	.33	
6.0	1.0	.66	147	.06	
8.0	1.2	.62	-159	.11	

ATF-25170 Typical Performance, $T_A = 25^{\circ}C$

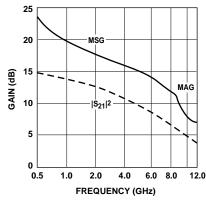


Figure 1. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $V_{DS}=3\ V,\ I_{DS}=20\ mA.$

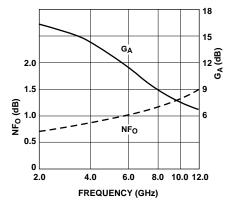
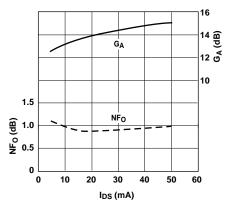
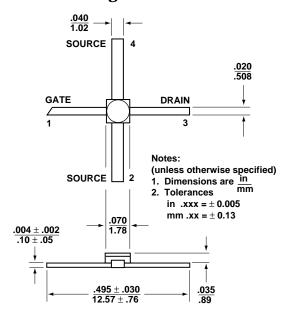


Figure 2. Optimum Noise Figure and Associated Gain vs. Frequency. $V_{DS}=3\ V,\ I_{DS}=20\ mA.$




Figure 3. Optimum Noise Figure and Associated Gain vs. I_{DS} . $V_{DS}=3\ V,\ f=4.0\ GHz.$

 $\textbf{Typical Scattering Parameters,} \ \ \text{Common Emitter,} \ \ Z_O = 50 \ \Omega, \ T_A = 25 \ ^{\circ}\text{C}, \ V_{DS} = 3 \ \text{V}, \ I_{DS} = 20 \ \text{mA}$

Freq.	S ₁₁			S_{21}		S ₁₂			S ₂₂	
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.5	.98	-23	13.6	4.80	160	-32.8	.023	76	.50	-23
1.0	.96	-38	13.0	4.46	147	-23.6	.037	67	.48	-30
2.0	.88	-66	11.5	3.75	121	-23.6	.066	50	.44	-45
3.0	.80	-86	10.2	3.23	102	-21.8	.081	41	.41	-55
4.0	.77	-106	9.3	2.93	82	-19.7	.103	28	.38	-65
5.0	.71	-127	8.5	2.66	62	-18.6	.118	17	.35	-78
6.0	.65	-149	7.9	2.47	42	-17.7	.130	6	.30	-93
7.0	.60	-173	7.3	2.33	24	-16.5	.149	-4	.26	-111
8.0	.56	161	6.8	2.20	5	-15.8	.162	-16	.22	-134
9.0	.56	136	6.2	2.05	-14	-15.1	.175	-26	.21	-166
10.0	.55	118	5.4	1.87	-31	-15.0	.178	-35	.21	173
11.0	.53	108	4.9	1.76	-46	-14.9	.180	-42	.22	164
12.0	.53	95	4.7	1.71	-62	-14.8	.183	-52	.23	159

A model for this device is available in the DEVICE MODELS section.

70 mil Package Dimensions

www.hp.com/go/rf

For technical assistance or the location of your nearest Hewlett-Packard sales office, distributor or representative call:

Americas/Canada: 1-800-235-0312 or

408-654-8675

Far East/Australasia: Call your local HP sales office.

Japan: (81 3) 3335-8152

Europe: Call your local HP sales office.

Data subject to change. Copyright © 1998 Hewlett-Packard Co.

Obsoletes 5965-8712E Printed in U.S.A. 5966-4978E (5/98)