

# Silicon Bipolar Monilithic Amplifiers

# Reliability Data

# **MSA Series**

# **Description**

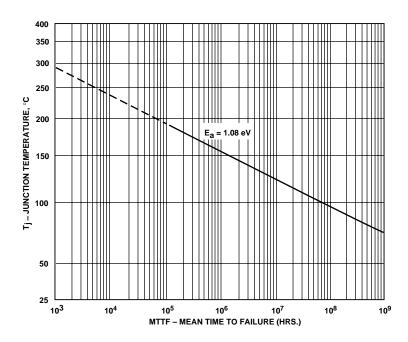
The following cumulative test results have been obtained from testing performed at Hewlett-Packard in accordance with the latest revision of MIL-STD-750. Data was gathered from the

product qualification, reliability monitor, and engineering evaluation.

For the purpose of this reliability data sheet, a failure is any part which fails to meet the electrical and/or mechanical specification listed in the Communications Components Designer's Catalog.

### 1. Life Test

## A. Demonstrated Performance


| Test Name        | Test Condition                | Units<br>Tested | Total<br>Device Hrs. | Total<br>Failed | Failure Rate<br>(%/1K Hours) |
|------------------|-------------------------------|-----------------|----------------------|-----------------|------------------------------|
| High Temperature | $T_A = 125$ °C, $(T_J = 160)$ | 258             | 516,000              | 0               | 0                            |
| Operating Life   |                               |                 |                      |                 |                              |
| (O.L.)           |                               |                 |                      |                 |                              |
| High Temperature | $T_A = 150$ °C, $(T_J = 183)$ | 190             | 188,000              | 2               | 1.06                         |
| Operating Life   |                               |                 |                      |                 |                              |
| (O.L.)           |                               |                 |                      |                 |                              |
| High Temperature | $T_{A} = 150^{\circ}C$        | 350             | 350,912              | 1               | 0.28                         |
| Storage (HTS)*   |                               |                 |                      |                 |                              |

#### **B.** Failure Rate Prediction

The failure rate will depend on the junction temperature of the device. The estimated life at different temperatures is calculated, using the Arrhenius plot with activation energy of 1.1eV, and the device thermal resistance of the stress board is 130°C/W, and listed in the following table.

|                              | Point(1)                               |                               | 90% Confidence Level(2)                  |                             |  |
|------------------------------|----------------------------------------|-------------------------------|------------------------------------------|-----------------------------|--|
| Junction<br>Temp.<br>TJ (°C) | MTTF*<br>(hours)                       | MTTF<br>FIT(3)                | MTTF<br>(hours)                          | FIT(3)                      |  |
| 183                          | $9.5 \times 10^{4}$                    | $1.05 \times 10^4$            | $3.57 \times 10^{4}$                     | $2.80 \times 10^{4}$        |  |
| 160                          | $7.4 \times 10^{5}$                    | $1.35 \times 10^{3}$          | $3.21 \times 10^{5}$                     | $3.11 \times 10^3$          |  |
| 125<br>100                   | $9.9 \times 10^6$<br>$8.0 \times 10^7$ | 1.0 x 10 <sup>2</sup><br>12.5 | $4.3 \times 10^{6} \\ 3.5 \times 10^{7}$ | 2.3 x 10 <sup>2</sup><br>28 |  |

<sup>\*</sup>MTTF data calculated from high temperature Operating Life tests.



#### **Notes:**

- 1. The point MTTF is simply the total device hours divided by the number of failures.
- 2. This MTTF and failure rate represent the performance level for which there is a 90% probability of the device doing better than the stated value. The confidence level is based on the statistics of failure distribution. The assumed distribution is exponential. This particular distribution is commonly used in describing useful life failures.
- 3. FIT is defined as Failure in Time, or specifically, failures per billion hours. The relationship between MTTF and FIT is as follows: FIT =  $10^9/(MTTF)$

# C. Example of Failure Rate Calculation:

At  $100^{\circ}$ C with a device operating 8 hours a day, 5 days a week, the percent utilization is:

% Utilization =  $(8 \text{ hrs/day x } 5 \text{ days/wk}) \div 168 \text{ hrs/wk} \cong 25\%$ 

Then the point failure rate per year is:

 $(12.5 \times 10^{-9} \text{/hr}) \times (25\%) \times (8760 \text{ hrs/yr}) = 2.7 \times 10^{-3} \% \text{ per year}$ 

Likewise, the 90% confidence level failure rate per year is:

 $(8.0 \times 10^{-7}/hr) \times (25\%) \times (8760 \text{ hrs/yr}) = 1.8 \times 10^{-1}\% \text{ per year}$ 

#### 2. Environmental Tests

| Test Name              | MIL-STD 750<br>Reference | Test Conditions         | Units<br>Tested | Units<br>Failed |
|------------------------|--------------------------|-------------------------|-----------------|-----------------|
| Solderability          | 2026                     | 215°C, 5 seconds        | 22              | 0               |
|                        |                          | post 8 hr steam aging   |                 |                 |
| Solder Heat            | 2031                     | 260°C, 10 seconds       | 22              | 0               |
| Resistance to Solvents | 1022                     | 4 Solvent Groups        | 15              | 0               |
| Autoclave              | HPGSS 12-109             | 121°C, 16 PSIG, 96 hrs  | 549             | 0               |
| Thermal Shock          | 1056                     | -65/150°C, 5 min dwell, | 460             | 0               |
|                        |                          | 200 cycles              |                 |                 |
| Temperature            | 1051                     | -55 to 150°C min dwell, | 643             | 0               |
| Cycle                  |                          | 200 cycles              |                 |                 |
| Lead Integrity         |                          | 2.0 Pounds Minimum      | 15              | 0               |

# 3. Flammability Test (MIL-STD-202, Method 111):

Meets Needle Flame test per UL Category D (Flaming Time <3 sec.) under Material Classification 94VO. **4. DOD-HDBK-1686 ESD** 

Classification: Class I