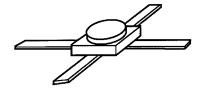


Cascadable Silicon Bipolar MMIC Amplifiers

Technical Data

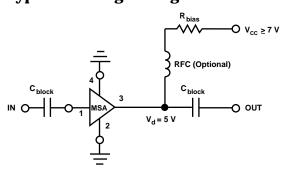
MSA-0370

Features


- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 2.8 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- 10.0 dBm Typical P_{1dB} at 1.0 GHz
- Unconditionally Stable (k>1)
- Hermetic Gold-ceramic Microstrip Package

Description

The MSA-0370 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, high reliability package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.


The MSA-series is fabricated using HP's 10 GHz $\rm f_{T}$, 25 GHz $\rm f_{MAX}$, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to

70 mil Package

achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

Typical Biasing Configuration

MSA-0370 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]			
Device Current	80 mA			
Power Dissipation ^[2,3]	425 mW			
RF Input Power	+13 dBm			
Junction Temperature	200°C			
Storage Temperature	−65 to 200°C			

Thermal Resistance ^[2,4] :	
$\theta_{\rm jc} = 125^{\circ}{ m C/W}$	

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25^{\circ}C$.
- 3. Derate at 8 mW/°C for $T_C > 147$ °C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	11.5	12.5	13.5
ΔG_P	Gain Flatness	f = 0.1 to 1.8 GHz	dB		±0.6	±1.0
f3 dB	3 dB Bandwidth		GHz		2.8	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.8:1	
VSWR	Output VSWR	f = 0.1 to 3.0 GHz			1.8:1	
NF	$50~\Omega$ Noise Figure	f = 1.0 GHz	dB		6.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		10.0	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		23.0	
tD	Group Delay	f = 1.0 GHz	psec		125	
$V_{\rm d}$	Device Voltage		V	4.5	5.0	5.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes

1. The recommended operating current range for this device is 20 to 50 mA. Typical performance as a function of current is on the following page.

MSA-0370 Typical Scattering Parameters	$(\mathbf{Z}_0 = 50 \ \Omega, T)$	$\Gamma_{A} = 25^{\circ}C, I_{d} = 35 \text{ mA}$
---	-----------------------------------	---

Freq.	S ₁₁		S ₂₁		S ₁₂			S ₂₂		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.13	-179	12.6	4.27	176	-18.6	.118	2	.09	-14
0.2	.13	-180	12.6	4.25	171	-18.3	.121	2	.10	-29
0.4	.12	-180	12.5	4.21	162	-18.4	.121	4	.12	-52
0.6	.11	-178	12.4	4.17	154	-18.2	.123	6	.14	-70
0.8	.11	-174	12.3	4.11	146	-17.8	.129	8	.17	-82
1.0	.10	-168	12.2	4.06	137	-17.7	.130	8	.20	-92
1.5	.11	-149	11.7	3.85	116	-17.1	.140	11	.24	-114
2.0	.16	-147	11.1	3.57	96	-16.2	.155	11	.27	-134
2.5	.22	-151	10.3	3.27	82	-15.6	.167	14	.27	-146
3.0	.28	-160	9.3	2.91	65	-15.2	.174	11	.27	-159
3.5	.33	-169	8.2	2.58	48	-14.5	.188	7	.26	-163
4.0	.36	-177	7.1	2.27	34	-14.3	.192	3	.25	-162
5.0	.38	163	5.1	1.81	9	-13.8	.203	-5	.23	-153
6.0	.39	132	3.4	1.48	-14	-13.5	.213	-13	.24	-160

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$ (unless otherwise noted)

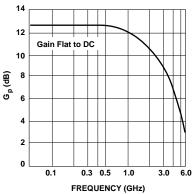


Figure 1. Typical Power Gain vs. Frequency, T_A = 25°C, I_d = 35 mA.

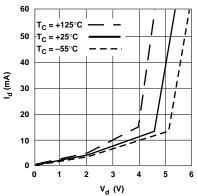


Figure 2. Device Current vs. Voltage.

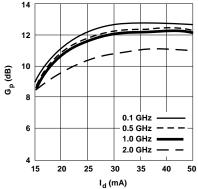


Figure 3. Power Gain vs. Current.

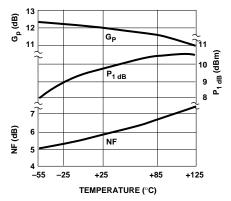


Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. **Mounting Surface Temperature,** $f = 1.0 \text{ GHz}, I_d = 35 \text{ mA}.$

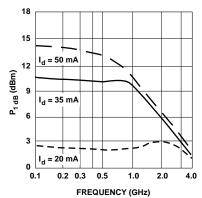


Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

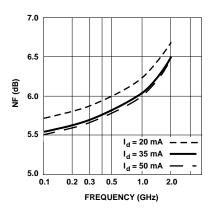
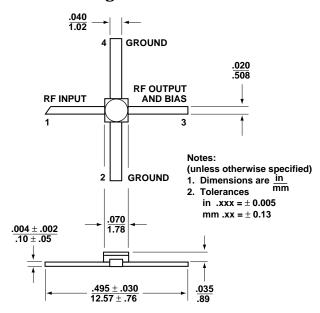



Figure 6. Noise Figure vs. Frequency.

70 mil Package Dimensions

www.hp.com/go/rf

For technical assistance or the location of $% \left\{ 1\right\} =\left\{ 1\right\}$ your nearest Hewlett-Packard sales office, distributor or representative call:

Americas/Canada: 1-800-235-0312 or

408-654-8675

Far East/Australasia: Call your local HP

sales office.

Japan: (81 3) 3335-8152

Europe: Call your local HP sales office.

Data subject to change. Copyright © 1998 Hewlett-Packard Co.

Obsoletes 5965-9569E

Printed in U.S.A. 5966-4953E (5/98)