

Design of a 4 GHz LNA for a TVRO System

Application Note A002

Introduction

With the advent of low cost GaAs FETs, the consumer home entered a new phase in communications: the era of satellite television reception. A typical Television Receive Only (TVRO) system for this market is shown in Figure 1. The consumer end of this system consists of an antenna to receive the satellite signal, a low noise amplifier or LNA to amplify the signal received by the antenna to a high enough level that it can be processed, a converter to change the frequency of the amplified signal from the satellite broadcast frequency to the frequency band in which the TV receiver operates, and a TV receiver to translate the signal into electrical impulses that will be changed into pictures and sound by the consumer's television set.

This note describes the design of a six stage LNA for such a system. The operating frequency of this LNA is 3.7 – 4.2 GHz, the most common band in the United States.

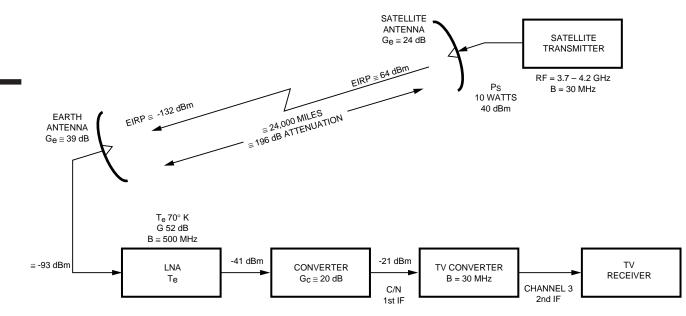


Figure 1. Satellite RF Down-Link Diagram for TVRO System with Typical System Parameters

LNA Specifications

The quality of the TV picture produced by a TVRO system is determined by the ratio of the gain of the earth antenna to the effective input noise temperature of the system (noise temperature of LNA plus noise temperature of antenna). This ratio is called the G/T ratio. It is important to the consumer since it shows that picture quality can be improved in either of two ways. Using a higher gain antenna will raise the system G/T ratio, and hence result in a better picture. Similarly, using an LNA with a lower noise figure will also raise the G/T ratio.

In general, the gain of an antenna is proportional to its size. Unfortunately for the consumer, so is its cost. Since the antenna tends to be the most expensive part of the home TVRO system, the importance of an economical LNA with low noise figure is readily seen.

The G/T ratio can be expressed as a function of the ratio of carrier power (C) to noise power (N) at the receiver, the effective-isotropic-radiated-power of the satellite (EIRP), the down link loss (L_s), the link margin (L_m), and the transmission bandwidth (B). The mathematical relationship is given by:

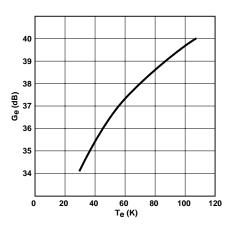
 $10 \log (G/T) = C/N - EIRP + L_s + L_m + 10 \log(B) - 228.6 dB$

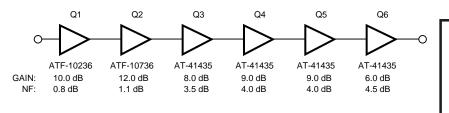
For a typical system,

```
C/N = 10 \text{ dB} minimum for good picture quality
         satellite transmit power = 10 watts
         satellite antenna gain = 24 \text{ dB}
so
          EIRP = satellite transmit power + satellite antenna gain
                 = 10 \text{ dBw} + 24 \text{ dB}
                 = 34 \text{ dBw}
          distance to satellite = 38,559 km
          wavelength (for a 4 GHz system) = 0.075 m
SO
                = 20 log [(4\pi) (distance to satellite)/(wavelength)]
          Ls
                = 20 \log [(4\pi) (38,559 \text{ km})/(0.075 \text{ m})]
                = 196.2 \text{ dB}
                = 1 \text{ dB}
          Lm
          bandwidth = 30 MHz
SO
                             = 10 \log (30 \times 10^{6} \text{ Hz})
          10 log B
                              = 74.8 dB
therefore
                             = 10 - 34 + 196.2 + 1 + 74.8 - 228.6
          10 \log (G/T)
                              = 19.4 \text{ dB}
```

(see Appendix 1 for details of the above derivation)

Using this relationship, a plot of earth station antenna gain vs. system noise temperature was generated for a C/N ratio of 10 dB (Figure 2). By using the fact that most 4 GHz TVRO antennas have noise temperatures of about 25 K, this graph can be used to find the minimum noise temperature that an LNA must have to provide an acceptable picture



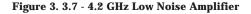

Figure 2. G_e vs. T_e for C/N = 10 dB

when coupled with an earth station antenna of a specified gain. For example, an antenna that has 39 dB of gain would require the LNA with which it is coupled to have a maximum noise temperature of (87-25) K or 62 K.

In addition to having a sufficiently low noise temperature, the LNA must also have enough gain to provide a signal strong enough to drive the converter. From the power levels shown in Figure 1, it can be seen that the LNA should have at least 52 dB of gain across the 3.7 - 4.2 GHz band.

Amplifier Design

The requirement that the LNA have minimal noise temperature dictates the use of GaAs FETs for the first two stages of the design. While GaAs FETs have superior noise performance to silicon bipolar transistors in the 4 GHz frequency range, they are also more expensive. In this design, the first two stages provide about 24 dB of gain. The remainder of the required 52 dB is made up of stages using lower cost silicon bipolars; to insure production margin four stages of silicon are used. The total amplifier chain is given in Figure 3.



NOTE:

The ATF-10736 has been obsoleted. Please use the ATF-10236 as a replacement.

NOTE: Q1 SELECTED FOR Fmin

DESIGN GOALS: NOISE FIGURE < 1.1 dB PERFORMANCE: TYPICAL GAIN 50-54 dB NOISE TEMPERATURE < 85 K GAIN > 50 dB OVERALL STABILITY LOW COST

The device selected for use in stage 1 is the HP ATF-10236. The device can provide the required noise temperatures and gain at 4 GHz, and comes packaged in a cost saving glass sealed package, suitable for use in commercial markets. It has a typical noise figure of 0.8 dB; for stage 2 the less expensive HP ATF-10736 with a typical noise figure of 1.1 dB is used.

The design proceeds form the S-parameters listed on the ATF-10235 data sheet. These S-parameters are repeated in Figures 7 and 8. The noise parameters used for Ql and Q2 are as follows:

Q1:	Fo	= 0.8 dB	Q2:	Fo	= 1.1 dB
	Γ_{on}	$= 0.42 \angle 148^{\circ}$		Γ_{on}	$= 0.43 \angle 152^{\circ}$
	R _n	= 3.6 Ohms		R _n	= 2.1 Ohms

where G_{on} is the reflection coefficient seen at the transistor input port for minimum noise figure. (Note: the noise contribution of a device may be expressed as either a noise figure in dB or a noise temperature in K. The relationship between these two measurements is shown in Figure 4.) A graph showing the total amplifier and system noise figures in K as a function of first stage noise figure in dB is shown in Figure 5.

The input network of Q1 is designed to match from a 50 Ω generator to Γ_{on} using lossless elements. Starting at Γ_{on}^* a series impedance of + j36 Ω brings the reflection coefficient to point A in Figure 6. This impedance is realized using a 1.43 nH inductor. Transforming to the admittance plane to point B, we find that an open stub of admittance j1.1 nS (normalized to 20 mS) will complete the match. The length of this stub is 0.132 λ g. For a softboard substrate having an effective dielectric constant of 2.05, this translates to a physical length of:

$$I = \frac{0.132c}{f x \sqrt{\epsilon}_{K}} = \frac{0.132 x 3 x 10^{10} \text{ cm/sec}}{3.95 \text{ GHz } x 2.54 \text{ cm/in } x \sqrt{2.05}} = 0.275 \text{ in}$$

Thus, the input design is simply a 50 Ω stub 275 mils long followed by an inductor of 1.4 nH. Notice that the series inductor can be realized using the gate lead of the transistor package.

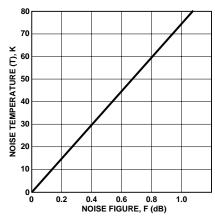


Figure 4. Noise Temperature vs. Noise Figure

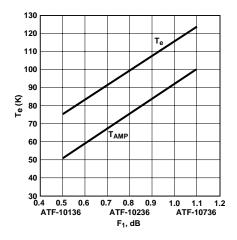
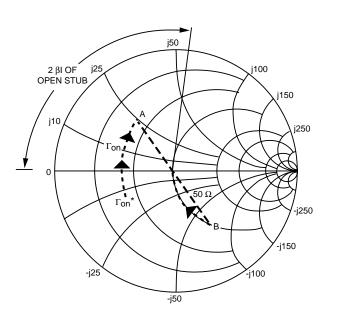



Figure 5. Effective Input Noise Temperature (T_e) vs. First Stage Noise Figure (F₁) (T_{Ant} = 25 K)

Figure 6. Input Network Design

!ATF-10236		S PARAMETERS		BIAS:	Vds=2V,	4		
!F	M[S11]	A[S11]	M[S21]	A[S21]	M[S12]	A[S12]	M[S22]	A[S22]
2	.74	-78	4.99	107	.09	50	.37	-54
3	.60	-105	4.17	82	.12	38	.34	-57
4	.52	-142	3.65	56	.15	24	.26	-60
5	.47	170	3.12	30	.17	7	.10	-51
6	.53	128	2.62	5	.18	-7	.09	71
7	.63	99	2.18	-15	.19	-20	.22	76
8	.72	77	1.80	-33	.19	-31	.32	67
9	.79	58	1.47	-50	.18	-43	.42	53
10	.80	41	1.19	-67	.18	-47	.49	41
11	.83	31	1.05	-80	.16	-64	.57	34
12	.83	22	.99	-93	.16	-71	.59	28
INOIS	SE PARAM	ETERS						
!F	FOPT	M[NO]	A[NO]	RN/	/50			
3	0.7	.42	108	.072	2			
4	0.8	.42	148	.072	2			
5	0.95	.42	180	.072	2			

Figure 7. S Parameters File for ATF-10236

!ATF-10736		S PARA	S PARAMETERS		BIAS: Vds=2V, Ids=20mA					
!F	M[S11]	A[S11]	M[S21]	A[S21]	M[S12]	A[S12]	M[S22]	A[S22]		
2	.79	-74	4.48	111	.082	52	.33	-38		
3	.65	-108	3.85	85	.108	39	.25	-45		
4	.58	-145	3.37	59	.137	26	.15	-4B		
5	.54	175	2.90	34	.156	11	.05	-5		
6	.57	135	2.4B	9	.173	-3	.11	76		
7	.66	103	2.06	-12	.177	-17	.23	70		
В	.73	83	1.66	-30	.174	-28	.33	59		
9	.80	70	1.37	-45	.166	-37	.44	50		
10	.81	57	1.17	-59	.184	-44	.49	48		
11	.84	44	1.03	-72	.168	-53	.56	46		
12	.85	32	.94	-84	.164	-61	.58	41		
INOISE PARAMETERS IF FOPT M[NO] A[NO]			RN/50)						
3 4 5	1.0 1.1 1.25	.43 .43 .43	122 152 180	.042 .042 .042						

Figure 8. S Parameters File for ATF-10736

The match for Q2 is established in a similar manner using the ATF-10736 S-parameters. The output of Q2 is conjugately matched for best gain, and the interstage between Q1 and Q2 is designed for both gain and stability. Stability of the amplifier should be checked at all frequencies where the stability factor k of the device used is less than 1.0. This means stability should be checked at frequencies below the band of operation as well as across the 3.7 - 4.2 GHz band. The entire match for the FET stages is then optimized using the Touchstone[®] program (Table 2.)

The noise parameters listed above correspond to a bias point of 2 V at 20 mA. A PNP active bias network (shown in Figure 9) is used to establish this bias point and to ensure that it remains constant over temperature. The bias current is set by R1 for Q1 and by R2 for Q2. A resistive divider sets the drain voltage. A DC converter circuit (shown in Figure 10) is used to provide the -5 volts needed for the gate bias.

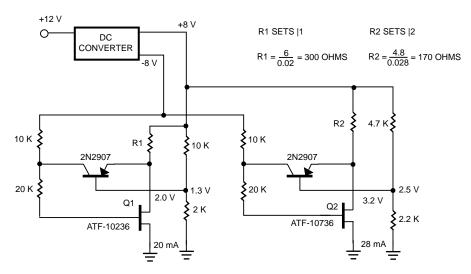
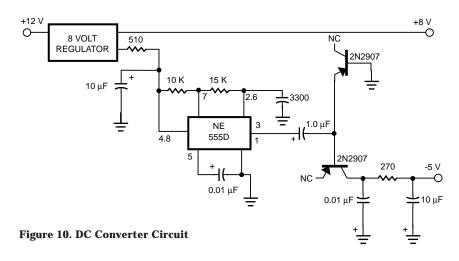



Figure 9. 3.7 – 4.2 GHz Low Noise Amplifier DC Schematic

The bipolar transistor selected for use in stages 3 – 6 is the HP AT-41435. This device provides reasonable gain and noise performance at an economical cost and, like the ATF-10236 and ATF-10736, comes packaged in a glass sealed ceramic package for commercial applications. The first three stages are biased at 15 mA for current efficiency; the output stage is biased at 37 mA for power out. As with the FETs, an active bias circuit using PNP transistors is used to ensure the stability of the bias point over temperature. The DC bias circuit used is shown in Figure 11.

The match for the bipolar stages is established in a similar manner to that of the FET stages. Using the data sheet S-parameters, a single device is conjugately matched to achieve maximum flat gain and minimum reflected power. Two such stages are then cascaded, and the interstage is reoptimized for stability and flat gain. This match is then "step and repeated" until all four stages are incorporated. Remember that the S-parameters used for the first 3 stages use the 8 V, 10 mA data, while the output stage design uses the 8 V, 25 mA data. Once again the design is optimized using the Touchstone program (Table 2).

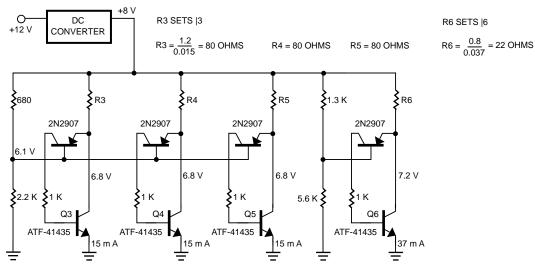


Figure 11. 3.7 - 4.2 GHz Low Noise Amplifier DC Schematic

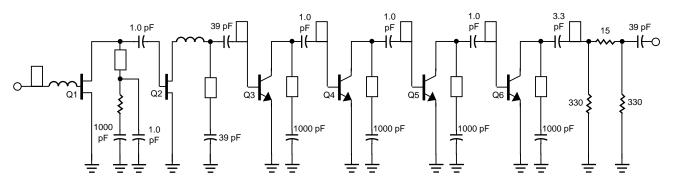


Figure 12. 3.7 - 4.2 GHz Low Noise Amplifier RF Schematic

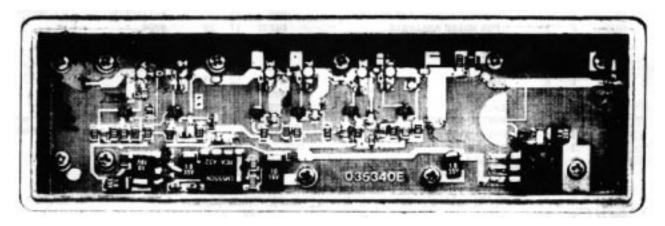


Figure 13. 4 GHz Low Noise Amplifier, Gain = 52 dB

The entire RF schematic for the final LNA is shown in Figure 12. The assembled RF and DC circuits are shown in Figure 13. In this photo the RF input is in the upper left corner, and the RF output and the DC input are in the upper right corner. The upper part of the circuitry is the RF path; the lower portion of the circuit is the DC path.

Performance

The Touchstone file describing the entire LNA is shown in Figure 14. (The S-parameter files ATF-10236 and ATF-10736 are given in Figures 7 and 8, respectively. The S-parameter files AT-41435A and AT-41435B are on the HP product disk supplied with Touchstone.) The predicted performance of the amplifier is shown in Figure 15. This simulation predicts a minimum gain of 54 dB and a maximum noise temperature of 70 K.

MSU	B ER=2.56 H	l=31 T=1	.0 RHO=	1.0 RGH=0		SLC	11	13		L=.5 C=1	!3RD BIPOLAR
MLIN	1	2		W=80 L=.01	1ST FET STG	MLIN	13	14		W=80 L=170	
MLIN	2	3		W=80 L=.01		S2PC	14	15	0		
MLO	С 3			W=80 L=275		MLIN	15	16		W=80 L=18	
IND	3	4		L=1.4		MLIN	16	27		W=35 L=400	
DEF2	2P 1	4		NAIN		SLC	27	0		L=.5 C=1000	
S2PA	A 4	5	0	ATF10236		MLIN	16	17		W=80 L=32	
DEF2	2P 4	5		NA2P		DEF2P	11	17		STG3	
MLIN	5	6		W=30 L=80		SLC	17	18		L=.5 C=1	!4TH 8IPOLAR
MLIN	6	61		W=10 L=250		MLIN	18	19		W=80 L=65	
SRC	61	0		R=50 C=1000	2ND FET STG	MLOC	19			W=65 L=50	
SLC	61	0		L=.5 C=1		S2PD	19	20	0	AT41435B	
SLC	6	7		L=.5 C=1		MLIN	20	21		W=80 L=200	
MLIN	1 7	8		W=30 L=40		MLIN	21	28		W=35 L=85	
DEF2	2P 5	8		NBIN		SLC	28	0		L=.5 C=1000	
S2PE	3 8	9	0	ATF10736		SLC	21	22		L=.5 C=3.3	
DEF2	2P 8	9		NB2P		MLOC	22			W=125 L=100	
IND	9	10		L=1.9		MLIN	22	23		W=80 L=100	
MLIN	l 10	101		W=20 L=250		MLSC	23			W=100 L=500	
SLC	101	0		L=.5 C=39		MLIN	23	24		W=80 L=175	
DEF2	2P 9	10		NBOUT		RES	24	0		R=330	
						RES	24	25		R=15	
NAIN	l 1	2		!CONNECTION OF	FET STAGES	RES	25	0		R=330	
NA2F	2	3		FOR NOISE ANAL	YSIS	DEF2P	17	25		STG4	
NBIN	3	4		(NOISE ANALYSIS	S ON						
NB2F	> 4	5		FET STAGES ONL	_Y)	LNA	50	51		ICONNECTION	NOF
NBO	UT 5	6				STG1	51	52		ENTIRE AMPI	IFIER
DEFZ	ZP 1	6		LNA		STG2	52	53			
						STG3	53	54			
SLC	1	2		L=.5 C=39	1ST BIPOLAR	STG4	54	55			
MLIN	2	3		W=80 L=395		DEF2P	50	55		тот	
MLO	C 3			W=110 L=135							
S2PC	3	4	0	AT41435A		OUT					
MLIN	4	5		W=100 L=55		TOT D8[S2	1] GR1				
MLIN	5	25		W=110 L=150		LNA D8[NF] GR2				
SLC	25	0		L=.5 C=1000		TOT K					
MLIN	5	6		W=100 L=55		TOT S11					
DEF2	2P 1	6		STG1		TOT S22					
SLC	6	7		L=.5 C=1	2ND BIPOLAR F	REQ					
MLIN	1 7	8		W=65 L=100		SWEEP 1	5.5				
MLO	C 8			W=110 L=135		SWEEP 3.	7 4.2 .1				
S2PC	8	9	0			GRID					
MLIN	9	10		W=80 L=80		GR1 0 70	0 10				
MLIN	l 10	26		W=90 L=200		RANGE 3.	.5 4.5 .1				
SLC	26	0		L=.5 C=1000		GR2 0 2	2				
MLIN		11		W=80 L=115							
DEF2	2P 6	11		STG2							

- ... -.--

FREQ-GHz	DB[S21]	DB[NF]	K MAGS [S11]		ANG[S11]	MAG[S22]	ANG[S22]
	тот	тот	TOT	тот	тот	TOT	TOT
1.00000	8.466	1.654	9.0E+10	0.903	-71.832	0.521	72.499
1.50000	30.748	1. 461	4.9E+07	0.869	- 94.731	0.504	176.117
2.00000	48.475	1.331	1.1E+05	0.825	-119.373	0.470	131.093
2.50000	SI.910	1.179	1.1E+04	0.682	-147.856	0.429	99.092
3.00000	52.532	1.047	3.4E+03	0.367	-158.040	0.325	67.371
3.50000	52.448	0.964	668.141	0.487	-151.330	0.133	57.614
3.70000	54.221	0.928	240.015	0.561	-172.611	0.124	87.100
3.80000	55.230	0.912	145.879	0.563	171.231	0.154	94.484
3.90000	56.086	0.899	99.250	0.510	150.730	0.195	92.928
4.00000	56.306	0.892	83.601	0.376	128.752	0.234	84.879
4.10000	55.697	0.901	82.668	0.214	118.998	0.263	73.398
4.20000	54.243	0.923	91.025	0.192	137.177	0.274	61.266
4.50000	48.318	1.131	103.915	0.655	45.952	0.263	25.803
5,00000	29.053	2.356	417.708	0.956	-78.409	0.230	-50.487

Figure 15. Output of Touchstone Analysis

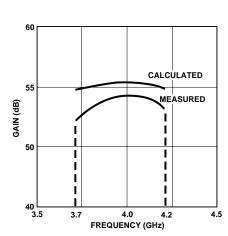


Figure 16. Gain vs. Frequency Low Noise Amplifier

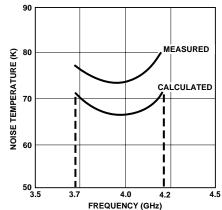
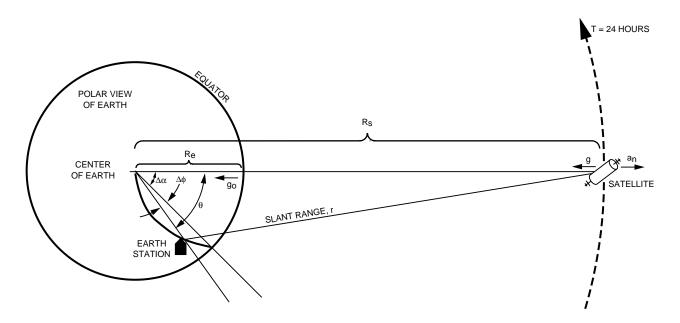



Figure 17. Noise Temperature vs. Frequency Low Noise Amplifier

assembled amplifier to that predicted by the simulation. Figure 17 compares its noise performance to that of the simulation. Note that the gain of the actual amplifier is between 52 and 54 dB and its noise temperature is between 75 and 80 K. The difference between measured and calculated performance is due primarily to circuit losses, which for the sake of simplicity were assumed to be zero throughout the simulation. Although the figures describe the performance of a typical amplifier, it should be noted that noise performance of less than 65 K across the band has been achieved from this design. Note also that the higher cost HP ATF-10136 GaAs FET with 0.5 dB typical noise figure is available for use in stages 1 and 2 if desired.

Figure 16 compares the measured gain performance of a typical

Appendix 1

Figure 18. Definitions for Orbiting Satellites

For a satellite in geosynchronous orbit, the sum of the forces acting on the satellite equals zero. Therefore:

where: g = the pull of gravity on the satellite $a_n =$ the normal acceleration of the satellite

From mechanics:

$$a_n = \frac{v_s^2}{R_s}$$
 Eq. 2

where: R_s = the distance from the center of the earth to the satellite v_s = the velocity of the satellite

and

$$V_{S} = \frac{2\pi R_{S}}{T}$$
 Eq. 3

where: T = the period of the orbit

Since the pull of gravity decreases inversely by the square of the distance from the earth:

$$g = g_0 = \left(\frac{R_e}{R_s}\right)^2$$
 Eq. 4

where: $g_o =$ the pull of gravity at the earth's surface $R_e =$ the radius of the earth

Substituting in equation 1:

$$g_{O}\left(\frac{R_{e}}{R_{s}}\right)^{2} - \frac{4\pi^{2}R_{s}}{T^{2}} = 0$$

Solving for R_s gives:

$$R_{\rm S} = \sqrt[3]{(g_{\rm O}T^2R_{\rm e}^2)/(4\pi^2)}$$
 Eq. 6

Substituting the values $g_0 = 32.2$ ft/sec² = 79,036 mi/hr²

 $T=24 \ hours \ (since \ the \ orbit \ is \ geosynchronous)$ $R_e=3963 \ miles$ gives: $R_s=26,270 \ miles.$

The distance to the satellite in the plane of the equator at the longitude of the satellite is therefore:

 $R_s - R_e = 26,270 - 3963 = 22,307$ miles.

This is the minimum distance from the earth to the satellite.

From trigonometry, the slant range, r, to the satellite is given by:

 $r^2 = R_s^2 + R_e^2 - 2 R_s R_e Cos\theta \qquad \qquad \text{Eq. 7}$

where θ and r are defined in Figure 18.

As an example, for Satcom 4 satellite at longitude 83° West the calculation for Santa Clara, California is as follows:

Latitude for Santa Clara $\cong 37^{\circ}$. Longitude for Santa Clara $\cong 122^{\circ}$.

From trigonometry, $\theta \cong 51^\circ$

Therefore:

 $r^2 = 26,270^2 + 3963^2 - 2(26,270)(3963)(0.6293)$ $= (690.1 + 15.7 - 131.0) \times 10^6$ $= 574.8 \times 10^6$

r = 23,975 miles = 38,559 km.

The free space attenuation encountered by a satellite broadcasting from this orbit can be calculated from:

$$L_{s} = 20 \log \frac{4\pi r}{\lambda} dB$$
 Eq. 8

where λ = wavelength

at 4 GHz, λ free space = $\frac{C}{f}$ = $\frac{3 \ x \ 10^8 \ m/sec}{4 \ x \ 10^9 \ sec^{-1}}$ = 0.075 meters

L_s is therefore given by:

$$L_{s} = 20 \log \frac{4\pi (38.559 \times 10^{3})}{0.075} dB$$
$$= 196.2 dB$$

www.hp.com/go/rf

For technical assistance or the location of your nearest Hewlett-Packard sales office, distributor or representative call:

Americas/Canada: 1-800-235-0312 or (408) 654-8675

Far East/Australasia: Call your local HP sales office.

Japan: (81 3) 3335-8152

Europe: Call your local HP sales office.

Data Subject to Change

Copyright © 1993 Hewlett-Packard Co.

Obsoletes 5091-8823E

5968-3244E (1/99)